Algorithmic and Implementation-Based Threats for the Security of Embedded Machine Learning Models

Author:

Moëllic Pierre-Alain,Dumont Mathieu,Hector Kevin,Hennebert Christine,Joud Raphaël,Paulin Dylan

Abstract

AbstractThe large-scale deployment of machine learning models in a wide variety of AI-based systems raises major security concerns related to their integrity, confidentiality and availability. These security issues encompass the overall traditional machine learning pipeline, including the training and the inference processes. In the case of embedded models deployed in physically accessible devices, the attack surface is particularly complex because of additional attack vectors exploiting implementation-based flaws. This chapter aims at describing the most important attacks that threaten state-of-the-art embedded machine learning models (especially deep neural networks) widely deployed in IoT applications (e.g., health, industry, transport) and highlighting new critical attack vectors that rely on side-channel and fault injection analysis and significantly extend the attack surface of AIoT systems (Artificial Intelligence of Things). More particularly, we focus on two advanced threats against models deployed in 32-bit microcontrollers: model extraction and weight-based adversarial attacks.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3