Author:
Jeon Hyeonseong,Bang Youngoh,Woo Simon S.
Publisher
Springer International Publishing
Reference39 articles.
1. Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: This table lists the benchmark results for the binary classification scenario. (2019). http://kaldir.vc.in.tum.de/faceforensics_benchmark/
2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
3. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout (2017). arXiv preprint arXiv:1708.04552
4. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)
5. Farid, H.: Exposing digital forgeries from jpeg ghosts. IEEE Trans. Inf. Forensics Secur. 4(1), 154–160 (2009)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SA$$^3$$WT: Adaptive Wavelet-Based Transformer with Self-Paced Auto Augmentation for Face Forgery Detection;International Journal of Computer Vision;2024-05-16
2. Deepfake Videos Generation and Detection: A Comprehensive Survey;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09
3. Unmasking the Illusion: Deepfake Detection through MesoNet;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09
4. Semi-Supervised Deep Domain Adaptation for Deepfake Detection;2024 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW);2024-01-01
5. GTA-Net: A Robust Method for Deepfake Face Image Detection;2023 China Automation Congress (CAC);2023-11-17