1. Athey, S., Tibshirani, J., Wager, S.: Generalized random forests. Ann. Stat. 47(2), 1148–1178 (2019). https://doi.org/10.1214/18-AOS1709
2. Athey, S., Wager, S.: Estimating treatment effects with causal forests: an application (2019)
3. Battocchi, K., et al.: EconML: a python package for ml-based heterogeneous treatment effects estimation (2019). https://github.com/microsoft/EconML. Version 0.x
4. Bishop, C.M.: Mixture density networks. Technical report (1994)
5. Chattopadhyay, A., Manupriya, P., Sarkar, A., Balasubramanian, V.N.: Neural network attributions: a causal perspective. In: International Conference on Machine Learning, pp. 981–990. PMLR (2019)