Two-Phase Pseudo Label Densification for Self-training Based Domain Adaptation
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-58601-0_32
Reference40 articles.
1. Atapour-Abarghouei, A., Breckon, T.P.: Real-time monocular depth estimation using synthetic data with domain adaptation via image style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2800–2810 (2018)
2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell., June 2016. https://doi.org/10.1109/TPAMI.2017.2699184
3. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation, June 2017
4. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 3339–3348 (2018)
5. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: Crdoco: pixel-level domain transfer with cross-domain consistency. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), June 2019
Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. centroIDA: Cross-domain class discrepancy minimization based on accumulative class-centroids for Imbalanced Domain Adaptation;Expert Systems with Applications;2024-12
2. Unsupervised domain adaptation with hard-sample dividing and processing strategy;Information Sciences;2024-10
3. Low-frequency amplitude fusion based consistency learning method for multi-source domain adaptation for joint optic disc and cup segmentation;Biomedical Signal Processing and Control;2024-10
4. Active domain adaptation for semantic segmentation via dynamically balancing domainness and uncertainty;Image and Vision Computing;2024-08
5. Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation;Computer-Aided Civil and Infrastructure Engineering;2024-07-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3