Publisher
Springer Nature Switzerland
Reference13 articles.
1. World Health Organization: Global Tuberculosis Report World Health Organization (2021)
2. Harries, A., Kumar, A.: Challenges and progress with diagnosing pulmonary tuberculosis in low- and middle-income countries. Diagnostics 8(4), 78 (2018). https://doi.org/10.3390/diagnostics8040078
3. Steingart, K.R., Henry, M., et al.: Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect. Dis. 6(9), 570–581 (2006). https://doi.org/10.1016/S1473-3099(06)70578-3
4. Quinn, J.A., Nakasi, R., et al.: Deep convolutional neural networks for microscopy-based point of care diagnostics. In: International Conference on Machine Learning for Health Care Proceedings, vol. 56, pp 1–12 (2016). http://arxiv.org/abs/1608.02989
5. López, Y.P., Costa Filho, C.F.F., et al.: Automatic classification of light field smear microscopy patches using Convolutional Neural Networks for identifying Mycobacterium Tuber-culosis. In: IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, pp. 1–5 (2017). https://doi.org/10.1109/CHILECON.2017.8229512