Author:
Basilio Julio Cesar,Ribeiro José Geraldo Telles,Cunha Americo,Oliveira Tiago Roux
Publisher
Springer International Publishing
Reference20 articles.
1. C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu-Batle, Fractional-order Systems and Controls – Fundamentals and Applications (Springer, Berlin, 2010)
2. M.D. Ortigueira, J.A.T. Machado, What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)
3. C. Li, W. Deng, Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)
4. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 1–13 (2015)
5. Z. Zheng, W. Zhao, H. Dai, A new definition of fractional derivative. Int. J. NonLin. Mech. 108, 1–6 (2019)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Reinforcement Learning for a Mechanical System under Friction Effect;2022 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE);2022-12-05
2. Evaluation of Fractional-Order Sliding Mode Control Applied to an Energy Harvesting System;2022 16th International Workshop on Variable Structure Systems (VSS);2022-09-11