Author:
Bailey James,Houle Michael E.,Ma Xingjun
Publisher
Springer International Publishing
Reference49 articles.
1. Amsaleg, L., et al.: The vulnerability of learning to adversarial perturbation increases with intrinsic dimensionality. In: IEEE Workshop on Information Forensics and Security, pp. 1–6 (2017)
2. Amsaleg, L., et al.: Extreme-value-theoretic estimation of local intrinsic dimensionality. Data Min. Knowl. Disc. 32(6), 1768–1805 (2018)
3. Amsaleg, L., Chelly, O., Houle, M.E., Kawarabayashi, K., Radovanović, R., Treeratanajaru, W.: Intrinsic dimensionality estimation within tight localities. In: Proceedings of 2019 SIAM International Conference on Data Mining, pp. 181–189 (2019)
4. Amsaleg, L., et al.: High intrinsic dimensionality facilitates adversarial attack: theoretical evidence. IEEE Trans. Inf. Forensics Secur. 16, 854–865 (2021)
5. Ansuini, A., Laio, A., Macke, J.H., Zoccolan, D.: Intrinsic dimension of data representations in deep neural networks. In: Advances in Neural Information Processing Systems, pp. 6111–6122 (2019)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献