Publisher
Springer Nature Switzerland
Reference39 articles.
1. Agarwal, C., et al.: Openxai: towards a transparent evaluation of model explanations. Adv. Neural. Inf. Process. Syst. 35, 15784–15799 (2022)
2. Akhavan Rahnama, A.H.: The blame problem in evaluating local explanations and how to tackle it. In: Nowaczyk, S., et al. (eds.) ECAI 2023, vol. 1947, pp. 66–86. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-50396-2_4
3. Alsulmi, M., Carterette, B.: Improving medical search tasks using learning to rank. In: 2018 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–8. IEEE (2018)
4. Arias-Duart, A., Parés, F., Garcia-Gasulla, D., Gimenez-Abalos, V.: Focus! rating xai methods and finding biases. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2022)
5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)