Author:
Cao Jin,Wang Guohua,Li Canguang,Ren Haopeng,Cai Yi,Wong Raymond Chi-Wing,Li Qing
Publisher
Springer International Publishing
Reference25 articles.
1. Baxter, J.: A Bayesian/information theoretic model of learning to learn via multiple task sampling. Mach. Learn. 28(1), 7–39 (1997). https://doi.org/10.1023/A:1007327622663
2. Benikova, D., Biemann, C., Reznicek, M.: NoSta-d named entity annotation for German: guidelines and dataset. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), pp. 2524–2531 (2014)
3. Finkel, J.R., Manning, C.D.: Nested named entity recognition. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol. 1-vol. 1, pp. 141–150. Association for Computational Linguistics (2009)
4. Gridach, M.: Character-level neural network for biomedical named entity recognition. J. Biomed. Inform. 70, 85–91 (2017)
5. Gu, B.: Recognizing nested named entities in GENIA corpus. In: Proceedings of the HLT-NAACL BioNLP Workshop on Linking Natural Language and Biology, pp. 112–113 (2006)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献