Author:
Khoulqi Ichrak,Idrissi Najlae
Publisher
Springer Nature Switzerland
Reference11 articles.
1. Bora, V.B., Kothari, A.G., Keskar, A.G.: Robust automatic pectoral muscle segmentation from mammograms using texture gradient and euclidean distance regression. J. Digit. Imaging 29(1), 115–125 (2016). https://doi.org/10.1007/s10278-015-9813-5
2. Cheikhrouhou, I.: Description et classification des masses mammaires pour le diagnostic du cancer du sein. (Description and classification of breast masses for the diagnosis of breast cancer). Doctoral Thesis. University of Évry Val d'Essonne, France (2012). https://dblp.org/rec/phd/hal/Cheikhrouhou12
3. Gardezi, S.J.S., Adjed, F., Faye, I., Kamel, N., Eltoukhy, M.M.: Segmentation of pectoral muscle using the adaptive gamma corrections. Multimed. Tools Appl. 77, 3919–3940 (2018). https://doi.org/10.1007/s11042-016-4283-4
4. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 4th edn. Pearson (2018). ISBN-13: 978-0133356724
5. Guo, Y., Zhao, W., Li, S., Zhang, Y., Lu, Y.: Automatic segmentation of the pectoral muscle based on boundary identification and shape prediction. Phys. Med. Biol. 65(4) (2020). https://doi.org/10.1088/1361-6560/ab652b