Target Concept Analysis

Author:

Hamborg Felix

Abstract

AbstractThis chapter details the first component of person-oriented framing analysis: target concept analysis. This component aims to find and resolve mentions of persons, which can be subject to media bias. The chapter introduces and discusses two approaches for this task. First, the chapter introduces an approach for event extraction. The approach extracts answers to the journalistic 5W1H questions, i.e., who did what, when, where, why, and how. The in-text answers to these questions describe a news article’s main event. Afterward, the chapter introduces an approach that is the first to resolve highly context-dependent coreferences across news articles as they commonly occur in the presence of sentence-level bias forms. Our approach can resolve mentions that are coreferential also only in coverage on the same event and that otherwise may even be contradictory, such as “attack” or “self-defense” and “riot” or “protest.” Lastly, the chapter argues for using the latter approach for the target concept analysis component, in particular because of its high classification performance. Another reason for our decision is that using the event extraction approach in the target concept analysis component would require the development of a subsequent approach, i.e., to compare the events extracted from individual articles and resolve them across all articles.

Funder

Heidelberger Akademie der Wissenschaften

Publisher

Springer Nature Switzerland

Reference90 articles.

1. Agence France-Presse. Taliban attacks German consulate in northern Afghan city of Mazar-i-Sharif with truck bomb. London, UK, 2016. url: www.telegraph.co.uk/news/2016/11/10/taliban-attack-german-consulatein-northern-afghan-city-of-mazar/ (visited on 02/15/2021).

2. Charu C. Aggarwal and Jiawei Han. Frequent Pattern Mining. Ed. by Charu C.Aggarwal and Jiawei Han. Cham: Springer International Publishing, 2014. isbn: 978-3-319-07820-5. doi: https://doi.org/10.1007/978-3-319-07821-2. arXiv: arXiv: 1011.1669v3. url: http://link.springer.com/10.1007/978-3-319-07821-2.

3. Berfin Aktas, Tatjana Scheffler, and Manfred Stede. “Coreference in English OntoNotes: Properties and Genre Differences”. In: Text, Speech, and Dialogue (TSD). Springer International Publishing, 2019, pp. 171–184. doi: https://doi.org/10.1007/978-3-030-27947-9_15. url: http://link.springer.com/10.1007/978-3-030-27947-9_15.

4. Nabiha Asghar. “Automatic Extraction of Causal Relations from Natural LanguageTexts:AComprehensive Survey”. In: arXiv preprint arXiv:1605.07895 (May 2016). arXiv: 1605.07895. url: http://arxiv.org/abs/1605.07895.

5. Shany Barhom et al. “Revisiting Joint Modeling of Cross-document Entity and Event Coreference Resolution”. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019, pp. 4179–4189. doi: https://doi.org/10.18653/v1/P19-1409. url: https://www.aclweb.org/anthology/P19-1409.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3