Abstract
AbstractThis chapter details the last component of person-oriented framing analysis: frame analysis. The component aims to classify how persons are portrayed in news articles. The chapter introduces and discusses two approaches for this task. First, it briefly presents an exploratory approach that aims to classify fine-grained categories of how persons are portrayed. Afterward, the chapter introduces the first method for target-dependent sentiment classification in the domain of news articles. The dataset and method enable sentiment classification in a domain that could not reliably be analyzed earlier. Lastly, the chapter argues for using the latter approach in the frame analysis component, in particular because of its high classification performance.
Funder
Heidelberger Akademie der Wissenschaften
Publisher
Springer Nature Switzerland
Reference86 articles.
1. Eneko Agirre et al. “SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot on Interpretability”. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Stroudsburg, PA, USA: Association for Computational Linguistics, 2015, pp. 252–263. doi: https://doi.org/10.18653/v1/S15-2045. url: http://aclweb.org/anthology/S15-2045.
2. Eneko Agirre et al. “SemEval-2016 Task 1: Semantic Textual Similarity, Monolingual and Cross-Lingual Evaluation”. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). Stroudsburg, PA, USA: Association for Computational Linguistics, 2016, pp. 497–511. isbn: 978-1-941643-95-2. doi: https://doi.org/10.18653/v1/S16-1081. url: http://aclweb.org/anthology/S16-1081.
3. Phyllis F. Agran, Dawn N. Castillo, and Dianne G. Winn. “Limitations of data compiled from police reports on pediatric pedestrian and bicycle motor vehicle events”. In: Accident Analysis and Prevention 22.4 (1990), pp. 361–370. issn: 00014575. doi: https://doi.org/10.1016/0001-4575(90)90051-L.
4. Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. “SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining.” In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). Vol. 10. Valletta, Malta: European Language Resources Association (ELRA), 2010, pp. 2200–2204. url: https://www.aclweb.org/anthology/L10-1531/.
5. Alexandra Balahur et al. “Sentiment analysis in the news”. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). Valletta, Malta: European Language Resources Association (ELRA), 2010. url: https://arxiv.org/abs/1309.6202.