1. S. Sangle, B. Rathore, R. Rathod, A. Yadav, and A. Yadav, “Real Time Drowsiness Detection System,” pp. 87–92, 2018. (Raspberry Pi).
2. K. Das and R. N. Behera, “A survey on machine learning: Concept, algorithms and applications,” International Journal of Innovative Research in Computer and Communication Engineering, vol. 5, no. 2, pp. 1301–1309, 2017.
3. Alioua, N., Amine, A., Rziza, M. and Aboutajdine, D., 2020. Driver’s fatigue and drowsiness detection to reduce traffic accidents on road.
4. Mehta, S., Dadhich, S., Gumber, S. and Jadhav Bhatt, A., 2020. Real-time driver drowsiness detection system using eye aspect ratio and eye closure ratio.
5. T. Soukupova and J. Cech, “Real-time eye blink detection using facial landmarks,” Computer Vision Winter Workshop (CVWW), 2016.