1. Bekker, J., Davis, J.: Learning from positive and unlabeled data: a survey. Mach. Learn. 109, 719–760 (2020)
2. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
4. Cao, N., Zhang, T., Shi, X., Jin, H.: Posistive-unlabeled learning via optimal transport and margin distribution
5. Chang, W.C., Yu, H.F., Zhong, K., Yang, Y., Dhillon, I.S.: Taming pretrained transformers for extreme multi-label text classification. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3163–3171 (2020)