Paracosm: A Test Framework for Autonomous Driving Simulations

Author:

Majumdar RupakORCID,Mathur AmanORCID,Pirron MarcusORCID,Stegner LauraORCID,Zufferey DamienORCID

Abstract

AbstractSystematic testing of autonomous vehicles operating in complex real-world scenarios is a difficult and expensive problem. We present Paracosm, a framework for writing systematic test scenarios for autonomous driving simulations. Paracosm allows users to programmatically describe complex driving situations with specific features, e.g., road layouts and environmental conditions, as well as reactive temporal behaviors of other cars and pedestrians. A systematic exploration of the state space, both for visual features and for reactive interactions with the environment is made possible. We define a notion of test coverage for parameter configurations based on combinatorial testing and low dispersion sequences. Using fuzzing on parameter configurations, our automatic test generator can maximize coverage of various behaviors and find problematic cases. Through empirical evaluations, we demonstrate the capabilities of Paracosm in programmatically modeling parameterized test environments, and in finding problematic scenarios.

Publisher

Springer International Publishing

Reference72 articles.

1. Abbas, H., O’Kelly, M., Rodionova, A., Mangharam, R.: Safe at any speed: A simulation-based test harness for autonomous vehicles. In: 7th Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy17) (October2017)

2. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing vision-based control systems using learnable evolutionary algorithms. In: Proceedings of the 40th International Conference on Software Engineering. p. 1016–1026. ICSE ’18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3180155.3180160, https://doi.org/10.1145/3180155.3180160

3. Alexander, R., Hawkins, H., Rae, A.: Situation coverage – a coverage criterion for testing autonomous robots (02 2015)

4. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience series indiscrete mathematics and optimization, Wiley (2004)

5. American Fuzzy Loop: Technical “whitepaper” for afl-fuzz, http://lcamtuf.coredump.cx/afl/technical_details.txt, accessed:2019-08-23

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3