Author:
Aswathy S. U.,Vincent Bibin,Jacob Pramod Mathew,Aniyan Nisha,Daniel Doney,Thomas Jyothi
Publisher
Springer Nature Switzerland
Reference19 articles.
1. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H., Subha, D.P: Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Prog. Biomed. 161, 103–113 (2018)
2. Thoduparambil, P.P., Dominic, A., Varghese, S.: M:EEG-based deep learning model for the automatic detection of clinical depression. Phys. Eng. Sci. Med. 43(4), 1349–1360 (2020)
3. Dhas, G.G.D., Kumar, S.S.: A survey on detection of brain tumor from MRI brain images. In 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), July, pp. 871–877. IEEE (2014)
4. Cai, H., Han, J., Chen, Y., Sha, X., Wang, Z., Hu, B., Gutknecht, J.: A pervasive approach to EEG-based depression detection. Complexity (2018)
5. Li, X., La, R., Wang, Y., Niu, J., Zeng, S., Sun, S., Zhu, J.: EEG-based mild depression recognition using convolutional neural network. Med. Biol. Eng. Comput. 57(6), 1341–1352 (2019)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Android App for Ayurvedic Herb Identification and Classification Using Machine Vision;2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST);2024-04-11