Publisher
Springer Nature Switzerland
Reference45 articles.
1. Ainetter, S., Fraundorfer, F.: End-to-end trainable deep neural network for robotic grasp detection and semantic segmentation from rgb. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). pp. 13452–13458. IEEE (2021)
2. Asif, U., Tang, J., Harrer, S.: Graspnet: an efficient convolutional neural network for real-time grasp detection for low-powered devices. In: IJCAI, vol. 7, pp. 4875–4882 (2018)
3. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: measuring errors between surfaces using the hausdorff distance. In: Proceedings of IEEE International Conference on Multimedia and Expo, vol. 1, pp. 705–708. IEEE (2002)
4. Bai, F., Zhu, D., Cheng, H., Xu, P., Meng, M.Q.H.: Active semi-supervised grasp pose detection with geometric consistency. In: 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1402–1408. IEEE (2021)
5. Buchholz, D., Futterlieb, M., Winkelbach, S., Wahl, F.M.: Efficient bin-picking and grasp planning based on depth data. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3245–3250. IEEE (2013)