1. Habib, U., Zucker, G., Blöchle, M., Judex, F., Haas, J.: Outliers detection method using clustering in buildings data. In: IECON2015-Yokohama, 9–12 November 2015. IEEE (2015). 978-1-4799-1762-4/15
2. Bhuyana, M.H., Bhattacharyya, D.K., Kalita, J.K.: A multi-step outlier-based anomaly detection approach to network-wide traffic. Inf. Sci. 348, 243–271 (2016).
3. Alguliyev, R.M., Aliguliyev, R.M., Imamverdiyev, Y.N.: An anomaly detection based on optimization I.J. Intell. Syst. Appl. 12, 87–96 (2017). http://www.mecs-press.org/, https://doi.org/10.5815/ijisa.2017.12.08
4. Hodge, V.J., Austin, J.: An evaluation of classification and outlier detection algorithms. Digital Creativity Labs, Department of Computer Science, University of York, UK (2018). arXiv:1805.00811v1 [stat.ML]
5. Zhao, Y., Nasrullah, Z.: PyOD: a python toolbox for scalable outlier detect. J. Mach. Learn. Res. 20, 1–7 (2019). Submitted 1/19; Revised 4/19; Published 5/19, arXiv:1901.01588v2 [cs.LG] (2019)