1. Balunovic, M., Vechev, M.: Adversarial training and provable defenses: bridging the gap. In: International Conference on Learning Representations (2019)
2. Bojarski, M., et al.: End to end learning for self-driving cars. CoRR abs/1604.07316 (2016). http://arxiv.org/abs/1604.07316
3. Bonaert, G., Dimitrov, D.I., Baader, M., Vechev, M.: Fast and precise certification of transformers. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. PLDI 2021, pp. 466–481. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3453483.3454056
4. Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., Li, F.F.: Imagenet large scale visual recognition challenge 2012 (ilsvrc2012) (2012). https://www.image-net.org/challenges/LSVRC/2012/
5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy