Author:
Muneeswaran Sivaanandh,Sachidananda Vinay,Patil Rajendra,Peng Hongyi,Liu Mingchang,Gurusamy Mohan
Publisher
Springer Nature Switzerland
Reference29 articles.
1. Aamir, M., Zaidi, S.M.A.: Clustering based semi-supervised machine learning for ddos attack classification. Journal of King Saud University - Computer and Information Sciences (2019). https://doi.org/10.1016/j.jksuci.2019.02.003, http://www.sciencedirect.com/science/article/pii/S131915781831067X
2. Amma, N.G.B., Subramanian, S.: Feature correlation map based statistical approach for denial of service attacks detection. In: 2019 5th International Conference on Computing Engineering and Design (ICCED), pp. 1–6 (2019)
3. Bhardwaj, A., Mangat, V., Vig, R., Halder, S., Conti, M.: Distributed denial of service attacks in cloud: State-of-the-art of scientific and commercial solutions. Comput. Sci. Rev. 39 100332 (2021). https://doi.org/10.1016/j.cosrev.2020.100332, https://www.sciencedirect.com/science/article/pii/S1574013720304329
4. Bhaya, W., Manna, M.: A proactive ddos attack detection approach using data mining cluster analysis. J. Next Gener. Inform. Technol. 5 36– 47 (D2014)
5. CAIDA: The caida ucsd “ddos attack 2007” dataset (2007)