1. Agrawal, H., Bahler, L., Micallef, J., Snyder, S., Virodov, A.: Detection of global, metamorphic malware variants using control and data flow analysis. In: 31st IEEE Military Communications Conference, MILCOM 2012, Orlando, October 29 – November 1, 2012, pp. 1–6 (2012). https://doi.org/10.1109/MILCOM.2012.6415581
2. Alazab, M., Venkatraman, S., Watters, P., Alazab, M.: Zero-day malware detection based on supervised learning algorithms of API call signatures. In: Proceedings of the Ninth Australasian Data Mining Conference, vol. 121, pp. 171–182. AusDM 2011, Australian Computer Society Inc., Darlinghurst (2011). http://dl.acm.org/citation.cfm?id=2483628.2483648
3. Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: A quantitative study of accuracy in system call-based malware detection. In: Proceedings of the 2012 International Symposium on Software Testing and Analysis, pp. 122–132. ISSTA 2012. ACM, New York (2012). https://doi.org/10.1145/2338965.2336768
4. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware malware detection. In: 2005 IEEE Symposium on Security and Privacy (SP 2005), pp. 32–46, May 2005. https://doi.org/10.1109/SP.2005.20
5. Cisco: Annual Cybersecurity Report (2018). https://www.cisco.com/c/m/en_au/products/security/offers/cybersecurity-reports.html