Author:
Deleplace Antoine,Atamuradov Vepa,Brahimi Mehdi,Allali Ahmed,Alleaume Guillaume,Ennajihi Houssame,Plana Robert
Publisher
Springer International Publishing
Reference19 articles.
1. Coble, J.B., Ramuhalli, P., Bond, L.J., Hines, W., Upadhyaya, B.: A review of prognostics and health management applications in nuclear power plants. Int. J. Progn. Heal. Manag. 6(SP3), 1–22 (2015)
2. Agarwal, V., Lybeck, N., Pham, B.T., Rusaw, R., Bickford, R.: Prognostic and health management of active assets in nuclear power plants. Int. J. Prog. Health Manage. 1–17 (2015)
3. Ribeiro, F.D.S., et al.: Towards a deep unified framework for nuclear reactor perturbation analysis. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, pp. 120–127 (2019)
4. Calivá, F., et al.: A deep learning approach to anomaly detection in nuclear reactors. In Proceedings of the International Joint Conference on Neural Networks, vol. 2018 (2018)
5. Peng, M., Wang, H., Chen, S., Xia, G., Liu, Y.: An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant. Nucl. Eng. Technol. 50(3), 396–410 (2018)