1. Alguacil, A., Bauerheim, M., Jacob, M.C., Moreau, S.: Predicting the propagation of acoustic waves using deep convolutional neural networks. In: AIAA Aviation Forum, Reston, VA, p. 2513 (2020)
2. Alsallakh, B., Kokhlikyan, N., Miglani, V., Yuan, J., Reblitz-Richardson, O.: Mind the pad - CNNs can develop blind spots. In: 9th International Conference on Learning Representations (ICLR), Vienna, Austria (2021)
3. Fotiadis, S., Pignatelli, E., Bharath, A.A., Lino Valencia, M., Cantwell, C.D., Storkey, A.: Comparing recurrent and convolutional neural networks for predicting wave propagation. In: ICLR 2020 Workshop on Deep Learning and Differential Equations (2020)
4. Gao, H., Sun, L., Wang, J.X.: PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parametric PDEs on irregular domain. J. Comput. Phys. 428, 110079 (2021)
5. Geneva, N., Zabaras, N.: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks. J. Comput. Phys. 403, 109056 (2019)