1. Adler, J., Lunz, S.: Banach Wasserstein GAN. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 6754–6763. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/7909-banach-wasserstein-gan.pdf
2. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Piccoli, B., Rascle, M. (eds.) Modelling and Optimisation of Flows on Networks: Cetraro, Italy 2009, pp. 1–155. Springer, Heidelberg (2013)
3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Birkhäuser, Basel (2008)
4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)
5. Blanchet, A., Carlier, G.: Remarks on existence and uniqueness of Cournot-Nash equilibria in the non-potential case. Math. Fin. Econ. 8(4), 417–433 (2014). https://doi.org/10.1007/s11579-014-0127-z, http://dx.doi.org/10.1007/s11579-014-0127-z