1. Aouaidjia, K., Sheng, B., Li, P., Kim, J., Feng, D.D.: Efficient body motion quantification and similarity evaluation using 3-d joints skeleton coordinates. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 2774–2788 (2019)
2. Chen, L., Zhang, Q.: Ddgcn: graph convolution network based on direction and distance for point cloud learning. Vis. Comput. 39(3), 863–873 (2023)
3. Chen, Y., Zhao, L., Peng, X., Yuan, J., Metaxas, D.: Construct dynamic graphs for hand gesture recognition via spatial-temporal attention. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 48.1-48.13 (2019)
4. De Smedt, Q., Wannous, H., Vandeborre, J.P.: Skeleton-based dynamic hand gesture recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9 (2016)
5. De Smedt, Q., Wannous, H., Vandeborre, J.P., Guerry, J., Le Saux, B., Filliat, D.: Shrec’17 track: 3d hand gesture recognition using a depth and skeletal dataset. In: 3DOR-10th Eurographics Workshop on 3D Object Retrieval, pp. 1–6 (2017)