1. Al-Bashabsheh, E., Al-Khazaleh, H., Elayan, O., Duwairi, R.: Commonsense validation for Arabic sentences using deep learning. In: 2021 22nd International Arab Conference on Information Technology (ACIT), pp. 1–7. IEEE (2021)
2. AL-Tawalbeh, S., AL-Smadi, M.: A benchmark Arabic dataset for commonsense explanation. arXiv preprint arXiv:2012.10251 (2020)
3. Alshanik, F., Apon, A., Herzog, A., Safro, I., Sybrandt, J.: Accelerating text mining using domain-specific stop word lists. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 2639–2648. IEEE (2020)
4. Antoun, W., Baly, F., Hajj, H.: Arabert: transformer-based model for Arabic language understanding. In: LREC 2020 Workshop Language Resources and Evaluation Conference 11–16 May 2020, p. 9 (2020)
5. Antoun, W., Baly, F., Hajj, H.: AraGPT2:pPre-trained transformer for Arabic language generation. In: Proceedings of the Sixth Arabic Natural Language Processing Workshop, pp. 196–207. Association for Computational Linguistics, Kyiv, Ukraine (Virtual) (2021). https://www.aclweb.org/anthology/2021.wanlp-1.21