1. Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2d–3d-semantic data for indoor scene understanding. arXiv preprint arXiv:1702.01105 (2017)
2. Cao, Y., Wu, Z., Shen, C.: Estimating depth from monocular images as classification using deep fully convolutional residual networks. IEEE Trans. Circ. Syst. Video Technol. 28(11), 3174–3182 (2017)
3. Cohen, T., Geiger, M., Köhler, J., Welling, M.: Convolutional networks for spherical signals. arXiv preprint arXiv:1709.04893 (2017)
4. Cohen, T.S., Weiler, M., Kicanaoglu, B., Welling, M.: Gauge equivariant convolutional networks and the icosahedral cnn. arXiv preprint arXiv:1902.04615 (2019)
5. Delage, E., Lee, H., Ng, A.Y.: A dynamic bayesian network model for autonomous 3d reconstruction from a single indoor image. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). vol. 2, pp. 2418–2428. IEEE (2006)