1. A. Baker, “Linear forms in logarithms of algebraic numbers. I, II, III”, Mathematika 13 (1966); 204–216, ibid. 14 (1967), 102–107; ibid. 14 (1967), 220–228.
2. A. Baker and H. Davenport, “The equations
$$3x^2-2 = y^2$$
and
$$8x^2-7 = z^2$$
”, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
3. W. D. Banks and F. Luca, “Concatenations with binary recurrent sequences”, J. Integer Seq. 8 (2005), Article 05.1.3, 19pg.
4. Yu. Bilu, G. Hanrot and P. M. Voutier, “Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte”, J. Reine Angew. Math. 539 (2001), 75–122.
5. G. D. Birkhoff and H. S. Vandiver, “On the integral divisors of
$$a^n\pm b^n$$
”, Ann. Math. (2) 5 (1904), 173–180.