1. Azevedo, T., de Jong, R., Maji, P.: Stochastic-YOLO: efficient probabilistic object detection under dataset shifts (2020). https://arxiv.org/abs/2009.02967
2. Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020)
3. Choi, J., Chun, D., Kim, H., Lee, H.: Gaussian YOLOv3: an accurate and fast object detector using localization uncertainty for autonomous driving (2019). http://arxiv.org/abs/1904.04620
4. Deepshikha, K., Yelleni, S.H., Srijith, P.K., Mohan, C.K.: Monte Carlo dropblock for modelling uncertainty in object detection (2021). https://arxiv.org/abs/2108.03614
5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)