Publisher
Springer Nature Switzerland
Reference40 articles.
1. Andrews, J.T., Morton, E.J., Griffin, L.D.: Detecting anomalous data using auto-encoders. Int. J. Mach. Learn. Comput. 6(1), 21 (2016)
2. Lecture Notes in Networks and Systems;S Ardabili,2020
3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management Of Data, pp. 93–104 (2000)
5. Campos, G., et al.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min. Knowl. Disc. 30(4), 891–927 (2016). https://doi.org/10.1007/s10618-015-0444-8