Immune Checkpoint Inhibition and Radiotherapy in Head and Neck Squamous Cell Carcinoma: Synergisms and Resistance Mechanisms

Author:

Brix Nikko,Lauber Kirsten

Abstract

AbstractImmune checkpoint inhibition has emerged as an integral part of the standard-of-care for head and neck squamous cell carcinoma (HNSCC) in recurrent and/or metastatic stages. Clinical responses are impressive but remain limited to a minority of patients. Primary resistance of never-responders is considered to derive from host- and tumor-specific characteristics, the latter comprising tumor immune checkpoint activity, immune contexture, tumor mutational burden, neo-antigen load, and others. Secondary resistance of initially responding patients in addition, appears to be driven predominantly by irreversible T-cell exhaustion and therapy-induced selection of tumor cell clones with mutations in critical genes involved in the response to immune checkpoint inhibition. With particular focus on primary resistance against immune checkpoint inhibition, scientific interest of preclinical and clinical researchers currently aims at the development and evaluation of combined modality treatment approaches. Radiotherapy is a highly promising partner in this regard and represents a crucial treatment modality for patients with locally advanced HNSCC. Historically established as cytotoxic anti-cancer treatment, a growing body of evidence has shown additional locoregional and systemic immunomodulatory effects of radiotherapy. These are largely attributed to reprogramming of the tumor microenvironment driven by dying and senescent irradiated tumor and normal tissue cells and the concomitant cascade of danger signals, chemokines, and cytokines which stimulate immune cell recruitment and activation. Moreover, the irradiated state of tumor cells bears interesting analogy to the anti-viral state, since fragments of nuclear and mitochondrial DNA that are released into the cytosol can stimulate cytosolic nucleic acid sensors to produce intra-tumoral type I interferons which are essential to (re-)activate the cancer immunity cycle and (re-)invigorate systemic anti-tumor T-cell responses. Apart from these tumor adjuvanticity enhancing effects, several reports have also described increased tumor antigenicity upon radiotherapy originating from radiation-induced exposure of neo-antigens. Collectively, radiotherapy thus may serve as a means of personalized in situ vaccination which can synergize with immune checkpoint inhibition and may help to undermine primary resistance. First clinical experiences have shown that scheduling and dosing of such combined modality treatment regimens are challenging. Moreover, recent preclinical evidence suggests that particularly the role of radiation-induced cytokines and interferons appears to be complex in such combined modality settings due to their ambiguous effects on tumor and immune cells in the tumor microenvironment. The signaling cascades that orchestrate immune cell (re-)activation and cell fate decisions in irradiated tumor cells, including tumor cell survival, proliferation, and/or metastasis formation, are intimately interconnected and require further in-depth investigation.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3