Author:
Hovick Torre J.,Duchardt Courtney J.,Duquette Cameron A.
Abstract
AbstractIn its simplest form, biodiversity is defined as species richness (the number of species in a given area). More complex definitions include the variety of life on Earth, from genes to ecosystems, and include the ecological and evolutionary processes that sustain that life. As in other ecosystems, biological communities in rangelands are influenced by a number of different abiotic and biotic drivers or “filters” at both broad and fine scales, and an understanding of these processes is critical for maintaining ecosystem services as well as addressing widespread biodiversity declines. In rangeland ecosystems specifically, the primary threats to biodiversity are habitat loss, fragmentation, and degradation through mismanagement, which includes suppression or mis-application of historical disturbance regimes. Restoring heterogeneity to rangelands by mimicking historical disturbance regimes has been shown to benefit biodiversity, but the exact role of disturbance varies widely throughout North American rangelands. As such, careful consideration of the type, duration/periodicity, intensity, and spatial and temporal extent and configuration of these disturbances is necessary when managing for site-specific biodiversity outcomes. It is important to consider the effects of both inherent (i.e., either natural or historical) and human-caused variability on rangeland plant and wildlife communities. In the future, practitioners should promote management practices that maintain and enhance biodiversity to maximize ecosystem functions and services that improve the quality and quantity of economic (e.g., livestock production, carbon banking) and ecological (e.g., biodiversity, sustainability) outcomes in North American rangelands.
Funder
U.S. Bureau of Land Management
Publisher
Springer International Publishing
Reference240 articles.
1. Albright TP, Pidgeon AM, Rittenhouse CD et al (2009) Effects of drought on avian community structure. Glob Chang Biol 16:2158–2170. https://doi.org/10.1111/j.1365-2486.2009.02120.x
2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: The 2012 revision. Rome: UN Food and Agricultural Organization (FAO). https://doi.org/10.22004/ag.econ.288998
3. Alkemade R, Reid RS, van den Berg M et al (2013) Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. Proc Natl Acad of Sci 110:20900–20905. https://doi.org/10.1073/pnas.101101310
4. Allen MS, Palmer MW (2011) Fire history of a prairie/forest boundary: more than 250 years of frequent fire in a North American tallgrass prairie. J Veg Sci 22:436–444. https://doi.org/10.1111/j.1654-1103.2011.01278.x
5. Allen M, Antwi-Agyei P, Aragon-Durand F et al (2019) Technical summary: global warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/SR15_TS_High_Res.pdf