Publisher
Springer Nature Switzerland
Reference52 articles.
1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for attribute-based classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 819–826 (2013). https://doi.org/10.1109/CVPR.2013.111
2. Akata, Z., Reed, S.E., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2927–2936 (2015). https://doi.org/10.1109/CVPR.2015.7298911
3. Annadani, Y., Biswas, S.: Preserving semantic relations for zero-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7603–7612 (2018)
4. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010)
5. Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. In: Advances in Neural Information Processing Systems (2011)