Author:
Aldeoes Yasser N.,Gokhale Prasad,Sondkar Shilpa Y.
Publisher
Springer International Publishing
Reference83 articles.
1. J. Para, J. Del Ser, A. J. Nebro, U. Zurutuza, and F. Herrera, “Analyze, Sense, Preprocess, Predict, Implement, and Deploy (ASPPID): An incremental methodology based on data analytics for cost-efficiently monitoring the industry 4.0” Eng. Appl. Artif. Intell., vol. 82, no. September 2018, pp. 30–43, 2019.
2. R. S. Peres, A. Dionisio Rocha, P. Leitao, and J. Barata, “IDARTS – Towards intelligent data analysis and real-time supervision for industry 4.0,” Comput. Ind., vol. 101, no. July, pp. 138–146, 2018.
3. T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P. Basto, and S. G. S. Alcalá, “A systematic literature review of machine learning methods applied to predictive maintenance,” Comput. Ind. Eng., vol. 137, no. September, p. 106024, 2019.
4. R. C. Parpala and R. Iacob, “Application of IoT concept on predictive maintenance of industrial equipment,” vol. 02008, pp. 1–8, 2017.
5. P. Ongsulee, V. Chotchaung, E. Bamrungsi, and T. Rodcheewit, “Big Data, Predictive Analytics and Machine Learning,” Int. Conf. ICT Knowl. Eng., vol. 2018-Novem, pp. 37–42, 2019.