1. Carreira-Perpiñán, M.A., Hinton, G.E.: On contrastive divergence learning. In: Cowell, R., Ghahramani, Z. (eds.) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, 6-8 January 2005, Savannah Hotel, Barbados, pp. 33–40. The Society for Artificial Intelligence and Statistics (2005). ISBN 0-9727358-1-X
2. Lecture Notes in Computer Science;V Chinarov,2001
3. Fischer, J., Lackner, S.: About learning in recurrent bistable gradient networks. CoRR abs/1608.08265 (2016),
https://arxiv.org/abs/1608.08265
4. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982).
https://doi.org/10.1073/pnas.79.8.2554
5. McGraw, P.N., Menzinger, M.: Bistable gradient networks. I. Attractors and pattern retrieval at low loading in the thermodynamic limit. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 67(2), 16118 (2003).
https://doi.org/10.1103/PhysRevE.67.016118