1. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)
2. Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components. J. R. Stat. Soc. B 59(4), 731–792 (1997)
3. Rasmussen, C.E.: The infinite Gaussian mixture model. In: Sara, A., Solla, T.K.L., Müller, K.-R. (eds.) Advances in Neural Information Processing Systems [NIPS Conference, Denver, Colorado, USA, 29 November–4 December 1999], vol. 12, pp. 554–560. The MIT Press (1999)
4. Neal, R.M.: Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 9(2), 249–265 (2000)
5. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)