1. Beltracchi, T. J.; Gabriele, G. A.: An investigation of using an RQP based method to calculate parameter sensitivity derivatives, in “Recent Advances in Multidisciplinary Analysis and Optimization”, NASA Conference Publication 3031, Part 2, Proceedings of a symposium held in Hampton, USA, September 28–30, 1988.
2. Beltracchi, T. J.; Nguyen, H. N.: Experience with post optimality parameter sensitivity analysis in FONSIZE, American Institute of Aeronautics and Astronautics, Report AIAA-92-4749-CP, pp. 496-506, 1992.
3. Betts, J. T.; Huffmann, W. P.: Path constrained trajectory optimization using sparse sequential quadratic programming, Applied Mathematics and Statistics Group, Boeing Computer Services, Seattle, USA, 1991.
4. Bock, H. G.; Krämer-Eis, P.: An efficient algorithm for approximate computation of feedback control laws in nonlinear processes, ZAMM, 61 (1981), T330–T332.
5. Büskens, C.: Direkte Optimierungsmethoden zur numerischen Berechnung optimaler Steuerungen, Diploma thesis, Institut für Numerische Mathematik, Universität Münster, Münster, Germany, 1993.