Author:
Graditi Giorgio,Buonanno Amedeo,Caliano Martina,Di Somma Marialaura,Valenti Maria
Publisher
Springer International Publishing
Reference137 articles.
1. Abbasi, R., Javaid, N., Ghuman, M., Khan, Z., & Rehman, S. A. (2019). Short term load forecasting using XGBoost. In L. Barolli, M. Takizawa, F. Xhafa, E. T. In, L. Barolli, M. Takizawa, F. Xhafa, & T. Enokido (Eds.), Intelligent system and computing. Springer Cham.
2. Agrawal, R., Muchahary, F., & Tripathi, M. (2018). Long term load forecasting with hourly predictions based on long-short-term-memory networks. In 2018 IEEE Texas power and energy conference (TPEC). https://doi.org/10.1109/TPEC.2018.8312088
3. Ahmadi-Karvigh, S., Ghahramani, A., Becerik-Gerber, B., & Soibelman, L. (2018). Real-time activity recognition for energy efficiency in buildings. Applied Energy, 211, 146–160.
4. Ahn, Y., & Kim, B. (2022). Prediction of building power consumption using transfer learning-based reference building and simulation dataset. Energy and Buildings, 258, 111717.
5. Akhter, M., Mekhilef, S., Mokhlis, H., & Mohamed Shah, N. (2019, March 27). Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renewable Power Generation, 13, 1009–1023. https://doi.org/10.1049/iet-rpg.2018.5649
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献