k-Distance Approximation for Memory-Efficient RkNN Retrieval
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-32047-8_6
Reference23 articles.
1. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Approximate reverse k-nearest neighbor queries in general metric spaces. In: Proceedings of CIKM, pp. 788–789. Citeseer (2006)
2. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient reverse k-nearest neighbor search in arbitrary metric spaces. In: Proceedings of SIGMOD, SIGMOD 2006, pp. 515–526. ACM, New York (2006). https://doi.org/10.1145/1142473.1142531
3. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient reverse k-nearest neighbor estimation. Informatik-Forschung und Entwicklung 21(3–4), 179–195 (2007)
4. Achtert, E., Kriegel, H.P., Kröger, P., Renz, M., Züfle, A.: Reverse k-nearest neighbor search in dynamic and general metric databases. In: Proceedings of EDBT, pp. 886–897. ACM (2009)
5. Borutta, F., Nascimento, M.A., Niedermayer, J., Kröger, P.: Monochromatic RkNN queries in time-dependent road networks. In: Proceedings of SIGSPATIAL MobiGIS, pp. 26–33. ACM (2014)
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Defining and designing spatial queries: the role of spatial relationships;Geo-spatial Information Science;2023-05-17
2. SISAP 2023 Indexing Challenge – Learned Metric Index;Similarity Search and Applications;2023
3. Learned Metric Index — Proposition of learned indexing for unstructured data;Information Systems;2021-09
4. Towards a Learned Index Structure for Approximate Nearest Neighbor Search Query Processing;Similarity Search and Applications;2021
5. Data-Driven Learned Metric Index: An Unsupervised Approach;Similarity Search and Applications;2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3