Publisher
Springer Nature Switzerland
Reference25 articles.
1. Arias-Londoño, J.D., Godino-Llorente, J.I., Sáenz-Lechón, N., Osma-Ruiz, V., Castellanos-Domínguez, G.: Automatic detection of pathological voices using complexity measures, noise parameters, and mel-cepstral coefficients. IEEE Trans. Biomed. Eng. 58(2), 370–379 (2011). https://doi.org/10.1109/TBME.2010.2089052
2. Arjmandi, M.K., Pooyan, M.: An optimum algorithm in pathological voice quality assessment using wavelet-packet-based features, linear discriminant analysis and support vector machine. Biomedical Signal Processing Control 7(1), 3–19 (2012). https://doi.org/10.1016/j.bspc.2011.03.010, https://www.sciencedirect.com/science/article/pii/S1746809411000383. Human Voice and Sounds: From Newborn to Elder
3. Barry, W., Pützer, M.: Saarbrucken Voice Database. Institute of Phonetics (2007). http://stimmdb.coli.uni-saarland.de/
4. Barsties, B., De Bodt, M.: Assessment of voice quality: current state-of-the-art. Auris Nasus Larynx 42(3), 183–188 (2015). https://doi.org/10.1016/j.anl.2014.11.001, https://www.sciencedirect.com/science/article/pii/S0385814614002053
5. Behlau, M.: Voz: O Livro do Especialista. Thieme Revinter (2001)