Physics-Informed Neural Networks
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-76587-3_5
Reference33 articles.
1. Dimitris C. Psichogios and Lyle H. Ungar. “A hybrid neural network-first principles approach to process modeling”. In: AIChE J. 38.10 (Oct. 1992), pp. 1499–1511. ISSN: 0001-1541, 1547-5905. DOI https://doi.org/10.1002/aic.690381003 (visited on 07/02/2020).
2. I.E. Lagaris, A. Likas, and D.I. Fotiadis. “Artificial neural networks for solving ordinary and partial differential equations”. In: IEEE Trans. Neural Netw. 9.5 (Sept. 1998), pp. 987–1000. ISSN: 10459227. DOI https://doi.org/10.1109/72.712178 (visited on 01/08/2020).
3. Risi Kondor. “N-body Networks: a Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials”. In: arXiv:1803.01588 [cs] (Mar. 5, 2018) (visited on 07/15/2020).
4. Matthew Hirn, Stéphane Mallat, and Nicolas Poilvert. “Wavelet Scattering Regression of Quantum Chemical Energies”. In: Multiscale Model. Simul. 15.2 (Jan. 2017), pp. 827–863. ISSN: 1540-3459, 1540-3467. DOI https://doi.org/10.1137/16M1075454. arXiv:1605.04654 (visited on 07/15/2020).
5. Stéphane Mallat. “Understanding deep convolutional networks”. In: Phil. Trans. R. Soc. A 374.2065 (Apr. 13, 2016), p. 20150203. ISSN: 1364-503X, 1471-2962. DOI https://doi.org/10.1098/rsta.2015.0203 (visited on 07/15/2020).
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantum extremal learning;Quantum Machine Intelligence;2024-07-05
2. Learning systems of ordinary differential equations with Physics-Informed Neural Networks: the case study of enzyme kinetics;Journal of Physics: Conference Series;2024-02-01
3. Deep learning in computational mechanics: a review;Computational Mechanics;2024-01-13
4. Artificial neural networks;Artificial Intelligence for a More Sustainable Oil and Gas Industry and the Energy Transition;2024
5. Hybrid acceleration techniques for the physics-informed neural networks: a comparative analysis;Machine Learning;2023-12-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3