Reinforcement Learning for Improving Object Detection
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-68238-5_12
Reference29 articles.
1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: Dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017
2. Andreopoulos, A., Tsotsos, J.K.: On sensor bias in experimental methods for comparing interest-point, saliency, and recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 110–126 (2012). https://doi.org/10.1109/TPAMI.2011.91
3. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR 2011, pp. 97–104 (2011). https://doi.org/10.1109/CVPR.2011.5995332
4. Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement learning. CoRR abs/1511.06015 (2015). http://arxiv.org/abs/1511.06015
5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-Scale Hierarchical Image Database. In: CVPR 2009 (2009)
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Real-time Crime Detection Using Customized CNN;2022 1st International Conference on Computational Science and Technology (ICCST);2022-11-09
2. Modelling a Reinforcement Learning Agent For Mountain Car Problem Using Q – Learning With Tabular Discretization;2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon);2022-10-16
3. Image Understanding With Reinforcement Learning: Auto-Tuning Image Attributes and Model Parameters for Object Detection and Segmentation;IEEE Transactions on Circuits and Systems for Video Technology;2022-10
4. Optimized Reward Function Based Deep Reinforcement Learning Approach for Object Detection Applications;2022 International Conference on Decision Aid Sciences and Applications (DASA);2022-03-23
5. BigyaPAn: Deep Analysis of Old Paper Advertisement;2021 International Joint Conference on Neural Networks (IJCNN);2021-07-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3