Publisher
Springer Nature Switzerland
Reference20 articles.
1. Chakraborty, M., et al.: DIAT-$$\mu $$ radhar (micro-doppler signature dataset) & $$\mu $$ Radnet (a lightweight DCNN)-for human suspicious activity recognition. IEEE Sens. J. 22(7), 6851–6858 (2022)
2. Chen, H., et al.: Human activity recognition using temporal 3DCNN based on FMCW radar. In: IEEE MTT-S International Microwave Biomedical Conference (IMBioC), pp. 245–247. IEEE (2022)
3. Chen, V.C.: Analysis of radar micro-Doppler with time-frequency transform. In: Proceedings of the10th IEEE Workshop on Statistical Signal and Array Processing, pp. 463–466 (2000)
4. Cippitelli, E., et al.: Radar and RGB-depth sensors for fall detection: a review. IEEE Sens. J. 17(12), 3585–3604 (2017)
5. Furukawa, H.: Deep learning for end-to-end automatic target recognition from synthetic aperture radar imagery. arXiv preprint arXiv:1801.08558 (2018)