Author:
Hou Junlin,Xiao Fan,Xu Jilan,Zhang Yuejie,Zou Haidong,Feng Rui
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Dai, L., et al.: A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat. Commun. 12(1), 1–11 (2021)
2. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
3. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 7132–7141 (2018)
4. Kaggle: Kaggle diabetic retinopathy detection competition. https://www.kaggle.com/c/diabetic-retinopathy-detection
5. Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献