Author:
Jolly John,Goyal Priya,Sahoo Vishal,Johansen Hans,Hall Mary
Publisher
Springer Nature Switzerland
Reference9 articles.
1. Bik, A., Koanantakool, P., Shpeisman, T., Vasilache, N., Zheng, B., Kjolstad, F.: Compiler support for sparse tensor computations in mlir. ACM Trans. Archit. Code Optim. 19(4) (2022). https://doi.org/10.1145/3544559
2. Bik, A., Koanantakool, P., Shpeisman, T., Vasilache, N., Zheng, B., Kjolstad, F.: Compiler support for sparse tensor computations in MLIR. ACM Trans. Arch. Code Optim. 19(4), 1–25 (2022). https://doi.org/10.1145/3544559
3. Bik, A.J.C.: Compiler Support for Sparse Matrix Computations. Ph.D dissertation, Leiden University (1996)
4. Buluç, A., Williams, S., Oliker, L., Demmel, J.: Reduced-bandwidth multithreaded algorithms for sparse matrix-vector multiplication. In: 2011 IEEE International Parallel & Distributed Processing Symposium, pp. 721–733 (2011). https://doi.org/10.1109/IPDPS.2011.73
5. Evtushenko, G.: December 2019. https://medium.com/gpgpu/block-sparse-matrix-vector-multiplication-with-cuda-4e616b30267