Publisher
Springer Nature Switzerland
Reference31 articles.
1. Dai, B., Bai, W.: Denoising ECG by adaptive filter with empirical mode decomposition (2021). arXiv preprint arXiv:2108.08376
2. Prashar, N., Sood, M., Jain, S.: Design and performance analysis of cascade digital filter for ECG signal processing. (2019)
3. Khosravy, M., Gupta, N., Patel, N., Senjyu, T., Duque, C.A.: Particle swarm optimization of morphological filters for electrocardiogram baseline drift estimation. In: Dey, N., Ashour, A., Bhattacharyya, S. (eds.) Applied Nature-Inspired Computing: Algorithms and Case Studies. Springer Tracts in Nature-Inspired Computing. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9263-4_1
4. Huang, H., Hu, S., Sun, Y.: a discrete curvature estimation based low-distortion adaptive Savitzky–Golay filter for ECG denoising. Sensors (Basel). 19(7), 1617 (2019). https://doi.org/10.3390/s19071617. PMID: 30987283; PMCID: PMC6479804
5. de Oliveira, B.R., et al.: A wavelet-based method for power-line interference removal in ECG signals. Res. Biomed. Eng. 34, 73–86 (2018)