Abstract
AbstractIn the 1980s, most households of rural India and Bangladesh switched from surface sources for their drinking water – which was causing high incidence of diarrheal disease – to groundwater extracted by hand pumps. However, for tens of millions of people, this groundwater contained high levels of arsenic, which has led to what the WHO has called the “largest mass poisoning of a population in history.” This case study describes the development of ElectroChemical Arsenic Remediation (ECAR), which is a technology that uses iron electrodes to oxidize and remove aqueous arsenic from drinking water. Pilot evaluation of ECAR began in 2011, with a 100 L reactor at a school in Amirabad. However, political tensions in Amirabad caused the subsequent 600 L reactor pilot to be relocated to a school in Dhapdhapi. The findings from this pilot enabled the construction of a 10,000-liter per day (LPD) ECAR plant at Dhapdhapi. During this scaling up process, technical and contextual challenges were encountered and overcome, including those arising from intermittent power supply and a hot/humid climate. Additionally, implementation challenges included training of local operators, ensuring continuity of knowledge within the team, revisiting and correcting early mistakes, and additional engineering work needed during commissioning. The 10,000 LPD plant has been successful both technically and financially. However, after the handoff of the ECAR technology and plant to the local partner, Livpure in 2016, no widespread replication of ECAR plants in the region has occurred. The engineering science behind ECAR continues to be an active area of research, with ongoing projects investigating the implementation of next-generation ECAR technologies in rural California and the Philippines.
Funder
United States Agency for International Development
Publisher
Springer International Publishing