Publisher
Springer International Publishing
Reference24 articles.
1. Bey, R., Goussault, R., Grolleau, F., Benchoufi, M., Porcher, R.: Fold-stratified cross-validation for unbiased and privacy-preserving federated learning. J. Am. Med. Inform. Assoc. 27(8), 1244–1251 (2020). https://doi.org/10.1093/jamia/ocaa096
2. Bottou, L., Bengio, Y.: Convergence properties of the k-means algorithms. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7. MIT Press (1994)
3. Budka, M., Gabrys, B.: Density-preserving sampling: robust and efficient alternative to cross-validation for error estimation. IEEE Trans. Neural Netw. Learn. Syst. 24(1), 22–34 (2013). https://doi.org/10.1109/TNNLS.2012.2222925
4. Celisse, A., Mary-Huard, T.: Theoretical analysis of cross-validation for estimating the risk of the k-nearest neighbor classifier. J. Mach. Learn. Res. 19(1), 2373–2426 (2018). JMLR. org
5. Cervellera, C., Maccio, D.: Distribution-preserving stratified sampling for learning problems. IEEE Trans. Neural Netw. Learn. Syst. 1–10 (2017). https://doi.org/10.1109/TNNLS.2017.2706964
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献