1. Abbaszadeh, O., Amiri, A., Khanteymoori, A.R.: An ensemble method for data stream classification in the presence of concept drift. Front. Inf. Technol. Electron. Eng. 16(12), 1059–1068 (2015). https://doi.org/10.1631/FITEE.1400398
2. Barddal, J.P.: Vertical and horizontal partitioning in data stream regression ensembles. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, Curitiba (2019)
3. Bonassa, G.: Adaptação de classificador utilizando a biblioteca XGBoost para classificação rápida de fluxos de dados parcialmente classificados com mudança de conceito (2021)
4. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al.: Xgboost: extreme gradient boosting. R Package Version 0.4-2 1(4), 1–4 (2015)
5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)