Author:
Roshanzamir Parinaz,Rivaz Hassan,Ahn Joshua,Mirza Hamza,Naghdi Neda,Anstruther Meagan,Battié Michele C.,Fortin Maryse,Xiao Yiming
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Camarasa, R., et al.: A quantitative comparison of epistemic uncertainty maps applied to multi-class segmentation. Mach. Learn. Biomed. Imaging 1, 1–39 (2021)
2. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
3. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008). https://doi.org/10.1109/TMI.2007.906087.PMID:18390341;PMCID:PMC2881565
4. Der Kiureghian, A., Ditlevsen, O.D.: Aleatoric or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009). https://doi.org/10.1016/j.strusafe.2008.06.020
5. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献